

PROGRAMAS DE I+D EN TECNOLOGÍAS 2018

ACRONIMO: REMTAVARES

TITULO PROGRAMA: Red Madrileña de Tratamientos para la

Reutilización de Aguas Residuales y Valorización de Fangos

PRESUPUESTO CONCEDIDO: 760,150 €

Madrid, 17 y 18 de abril de 2024

REMTAVARES - ¿Quiénes participamos?

4 GRUPOS DE INVESTIGACIÓN + 1 LABORATORIOS DE INVESTIGACIÓN

Laboratorio de Análisis de Aguas

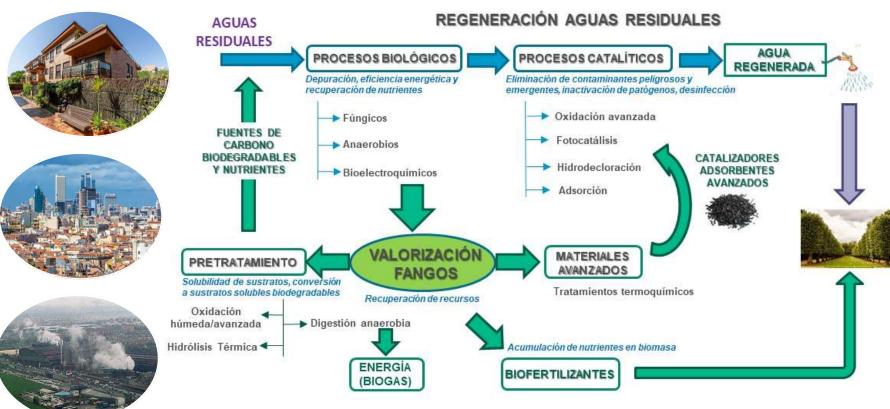
88 INVESTIGADOR@S

55 % DOCTOR@S

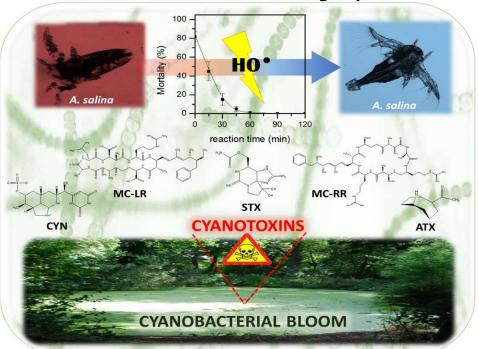
45 % INVESTIGADORAS

REMTAVARES - ¿Quiénes participamos?

Empresas



REMTAVARES - ¿Qué objetivos planteamos?


REMTAVARES

REMTAVARES - ¿Qué resultados hemos obtenido?

Procesos de oxidación avanzada

Eliminación de cianotoxinas en agua potable

Journal of Environmental Management 320 (2022) 115769

Contents lists available at ScienceDirect

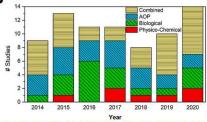
Journal of Environmental Management

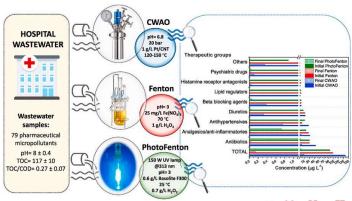
journal homepage: www.elsevier.com/locate/jenvman

Review

Critical review of technologies for the on-site treatment of hospital wastewater: From conventional to combined advanced processes

M.I. Pariente a, , Y. Segura , S. Álvarez-Torrellas , J.A. Casas , Z.M. de Pedro , E. Diaz , J. García , M.J. López-Muñoz , J. Marugán , A.F. Mohedano , R. Molina , M. Munoz , C. Pablos , J.A. Perdigón-Melón , A.L. Petre , J.J. Rodríguez , M. Tobajas , F. Martínez




- PhCs from HWW are discharge into municipal sewer system without preliminary treatment
 - Ineffective removal in conventional wastewater treatment

High presence in the environment

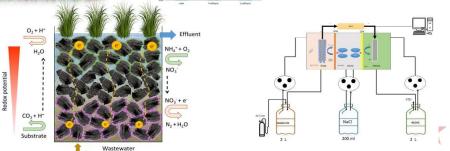
Negative eco-toxicological and bio-accumulative effects

THE COMBINED PROCESSES COULD BE THE SOLUTION FOR THE ON-SITE TREATMENT OF HWW AND SIMULTANEOUS ELIMINATION OF PhCs, ARGs AND ARBS

Procesos biológicos fotoanaerobios

1. Depuración de aguas residuales urbanas e industriales

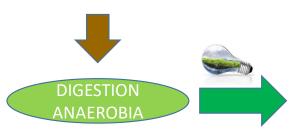
- Menor huella de carbono
- Mayor eficiencia energética
- 2. Recuperación de recursos
- Recuperación de nutrientes N y P
- Producción de biopolímeros precursor de biopolímeros
- Aguas urbanas
- Aguas de refinería


Tecnologías electroquímicas microbianas

1. Depuración y valorización de agua residual

- Generación de bioelectricidad a partir de los residuos como materia prima energética
- Recuperación de nutrientes.
- 2. Desalación. Reutilización sostenible de aguas salobres
- 3. Detección de contaminantes. Biosensores
- 4. Síntesis bioelectroquímica a partir del CO₂
- Aguas urbanas, aguas industria cervecera
- Filtros, humedales reactores de lecho fluidizado

Valorización de fangos urbanos e industriales

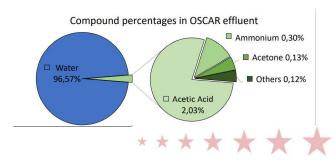

Tratamientos termoquímicos

Oxidación húmeda

Fangos de depuradora urbana

Incremento potencial metanogénico Mayor producción de energía (biogás)

Carbón activo



Catalizadores procesos de oxidación avanzada

- Fangos de depuradora urbanos
- Fangos industriales (farmacéutica y petroquímica)

Prototipo de 50 L/h Solubilización completa de sólidos Eliminación de patógenos



Libro

Tecnologías avanzadas de tratamiento de aguas residuales

Coordinador general

Fernando Martinez Castillejo

Departamento de Tecnología Química y Ambiental Universidad Rey Juan Carlos, Móstoles, Madrid (España)

Bloque I. Procesos Biológicos Avanzados

Ana Cruz del Álamo

Departamento de Tecnología Química y Ambiental Universidad Rey Juan Carlos, Móstoles, Madrid (España)

Bloque II. Procesos Microbianos Electroquímicos.

Karina Boltes Espínola y Abraham Esteve Núñez

Departamento Química Analítica, Química Física e Ingeniería Química Universidad de Alcalá, Alcalá de Henares, Madrid (España).

Bloque III. Procesos Catalíticos

Jose Antonio Casas de Pedro y Juan Zazo Martinez

Departamento de Ingeniería Química Universidad Autónoma de Madrid (España)

Bloque IV: Procesos fotocatalíticos y electrofotocatalíticos.

María Jose López Muñoz y Cristina Pablos Carro

Departamento de Tecnología Química y Ambiental Universidad Rey Juan Carlos, Móstoles, Madrid (España)

Bloque V: Procesos de separación

Juan García Rodríguez y Silvia Alvarez Torrellas

Departamento de Ingenieria Química y de Materiales Universidad Complutense de Madrid (España)

HITOS ALCANZADOS

- ➤ Publicaciones: 137 RESPECTO A 60 PLANIFICADOS (más del 70% en Q1)
- > Participación en congresos 123 RESPECTO A 91 PLANIFICADOS
- Financiación o cofinanciación de estancias de investigador@s: 14
- Tesis Doctorales defendidas: 20
- Trabajos fin de Master: 39

INDICADORES

- > 81% de las publicaciones científicas en revistas del primer cuartil.
- > 26 % de las publicaciones con colaboración internacional.
- > 26 publicaciones en abierto (19 % del total de las publicaciones)
- > 67 % de las participaciones en congresos internacionales.
- > 52 % de las participaciones en congresos en formato oral.

LAGUA: Laboratorio de análisis de aguas residuales. Acreditación ENAC

Acreditación ENAC en ensayos realizados sobre aguas regeneradas (huevos de nematodos intestinales, sólidos en suspensión, turbidez) Referencia 1343/LE2501

Tecnologías sostenibles de tratamiento de aguas y protección del medio ambiente

REMTAVARES – ¿Cómo hemos continuado?

- ✓ Tratamientos cuaternarios para desafíos emergentes en materia de contaminación del agua (pesticidas, fármacos, antibióticos, cosméticos, micro- nanoplásticos).
- ✓ Tecnologías para la eliminación de microplásticos y contaminantes de preocupación emergente de aguas residuales.
- ✓ Neutralidad energética: tecnologías fotoasistidas por radiación solar, microbianas, fotobiolectroquímicas.
- ✓ <u>Tecnologías para la valorización de fangos de depuradora y obtención de productos:</u> **adsorbentes de microcontaminantes, materiales conductores humedales bioelectrogénicos, fertilizantes...)**
- ✓ Transformación biológica de CO₂ de biogás a productos: biomasa, proteína microbiana, carotenoides, ácidos grasos volátiles.

Directiva revisada 91/271 sobre el tratamiento de

sobre el tratamiento de aguas residuales urbanas

Directiva (UE) 2020/2184

<u>relativa a la calidad de las aguas</u> destinadas al consumo humano

